I am a doctoral researcher specializing in interpretable machine learning for medical time series. My work focuses on applications for AI such as ease of breathing estimation for COPD and progression prediction for MS, where I design both machine learning approaches as well as novel explainability techniques.
I am currently finalizing my PhD at Ghent University-imec, after submitting my thesis entitled "Interpretable Machine Learning for Motor Evoked Potentials and Respiratory Time Series Data". I am passionate about research and development roles that focus on advancing trustworthy and reliable AI, including interpretability, uncertainty and causality, as well as working towards real utility for AI for medical and other applications.
Publications
Interpretable machine learning models for COPD ease of breathing estimation
Kok, T. T., J. Morales, D. Deschrijver, et al. — Medical & Biological Engineering & Computing (2025)
Kok, T. T., J. Morales, D. Deschrijver, et al. — Medical & Biological Engineering & Computing (2025)
Comparator model for detecting changes in the ease of breathing of COPD patients
Kok, T. T., W. Groenendaal, D. Blanco-Almazan, et al. — IJCAI, 6th International Workshop on Knowledge Discovery in Healthcare Data (2023)
Kok, T. T., W. Groenendaal, D. Blanco-Almazan, et al. — IJCAI, 6th International Workshop on Knowledge Discovery in Healthcare Data (2023)
Implementation of and experimental software for active selection of classification features
Kok, T. T., G. Krempl, H. G. Schnack — Software Impacts, vol. 9 (2021)
Kok, T. T., G. Krempl, H. G. Schnack — Software Impacts, vol. 9 (2021)
Active selection of classification features
Kok, T. T., R. M. Brouwer, R. M. Mandl, H. G. Schnack, G. Krempl — Advances in Intelligent Data Analysis XIX (2021)
Kok, T. T., R. M. Brouwer, R. M. Mandl, H. G. Schnack, G. Krempl — Advances in Intelligent Data Analysis XIX (2021)
Under Review
In Review
Assessing the Effectiveness of Motor Evoked Potentials as Predictors for Multiple Sclerosis Progression
Kok, T. T.*, C. Dekeyser*, L. Burgelman, et al. — BMC Neurology
Kok, T. T.*, C. Dekeyser*, L. Burgelman, et al. — BMC Neurology
In Review
Flow-Volume Curves for Effective and Interpretable Artificial Intelligence in Respiratory Medicine
Kok, T. T., J. Morales, C. Smeets, et al. — BMC Medical Informatics & Decision Making
Kok, T. T., J. Morales, C. Smeets, et al. — BMC Medical Informatics & Decision Making
In Preparation
Phase Space Reconstruction for Comprehensible Time Series Classification
Kok, T. T., N. Vandemoortele, J. Morales, et al. — Target: Medical & Biological Engineering & Computing
Kok, T. T., N. Vandemoortele, J. Morales, et al. — Target: Medical & Biological Engineering & Computing
Predicting blood pressure dynamics during hemodialysis by thoracic bioimpedance
Schoutteten, M. K., Kok, T. T., P. van der Heijden, et al. — Target: Clinical Kidney Journal
Schoutteten, M. K., Kok, T. T., P. van der Heijden, et al. — Target: Clinical Kidney Journal
Explaining Time Series Classifiers with Abstract Features
Kok, T. T., J. Morales, V. Mihajlovic, et al. — In Preparation
Kok, T. T., J. Morales, V. Mihajlovic, et al. — In Preparation